
用户手册

PMC007C2 系列

微型一体化步进驱动控制器

1. 版本控制

1) 文档更新记录

日期	更新人	版本	备注
2014-10-19	huangcheng	V0.1.0	Initial
2014-11-25	Liur	V0.1.1	Fix typo
2014-12-08	huangcheng	V0.1.2	添加系统控制对象; 信号接口 J1 添加
			BOOT 和 RESET 信号描述;将外部紧急
			停止使能和外部紧急停止触发模式对象
			合并为一个对象;修改工具截图及添加相
			关功能说明;
2015-5-6	huangcheng	V0.1.3	PDO function supplement
2016-6-15	wentao	V0.1.4	Add senseless stall detection
2016-9-22	Liur	V0.1.5	Add function description for close loop
2016-11-7	huangcheng	V0.1.6	Add external stop3
2016-11-25	wentao	V0.1.7	Close loop function supplement
2017-10-8	liur	V0.1.8	Add pvtb mode, update feature & function
2018-6-15	jiawei	V0.1.9	Migrated from pmc007cxsx
2018-7-23	hc	V0.2.0	Modify instruction
2018-09-27	hc	V0.2.1	1. Add analog input function
			2. Add step notify related objects
2018-11-30	Tanlu	V0.2.2	Supplement description for Ext port
2018-12-3	huangcheng	V0.2.3	Add sensor type parameter description
2019-02-25	huangcheng	V0.2.4	1. Functional description of adding PV/PP
			mode
			2. Adding analog location function
			description
2019-02-26	liur	V0.2.5	Migrated from pmc007cxsxp

目录

1	引言	i		7
	1.1	知认	只产权保护申明	7
	1.2	免责	责声明	7
2	概之	₺		8
	2.1	主要	要特性	8
	2.2	功能	能特点	8
	2.3	产品	品选型与订购信息	8
3	接口	口说明		9
	3.1	接约	线端口位置	9
	3.2	电机	孔接口 J2	9
	3.3	信号	号接口及电源接口 J1	9
	3.4	CA	N 网络连接	9
	3.5	限在	立开关连接	10
	3.6	其他	也限位开关连接	11
	3.7	机板	戒开关连接	11
	3.8	模扎	以量调速	11
4	CA	Nopen 通	讯	11
	4.1	CA	Nopen 概述	11
	4.2	CA	N 帧结构	12
	4.3	配置	置 CAN 通讯	12
		4.3.1	节点 ID	12
		4.3.2	波特率	13
		4.3.3	组 ID	13
	4.4	系统	充信息获取	13
		4.4.1	设备节点名称	13
		4.4.2	硬件版本	14
		4.4.3	软件版本	14
		4.4.4	系统控制	14
	4.5	电机	乳控制参数	14
		4.5.1	错误状态	14
		4.5.2	控制器状态	15
		4.5.3	转动方向	15
		4.5.4	最大速度	15
		4.5.5	相对位移指令	16
		4.5.6	绝对位移指令	16
		4.5.7	终止步进指令	16
		4.5.8	工作模式	17
		4.5.9	启动速度	17
		4.5.10	停止速度	
		4.5.11	加速度系数	
		4.5.12	减速度系数	17
		4.5.13	细分数	18
		4.5.14	最大相电流	19

	4.5.15	电机位置	19
	4.5.16	电流衰减	19
	4.5.17	电机使能	19
	4.5.18	堵转设置(开环)	20
	4.5.19	堵转参数(保留功能)	20
	4.5.20	实时速度(闭环)	20
4.	6 外音	鄂紧急停止	21
4.	7 通月	用 IO 端口	22
	4.7.1	通用 IO 端口设置	22
	4.7.2	通用 IO 端口值	23
4.	8 离约	线编程	24
	4.8.1	离线编程参数 1	24
	4.8.2	离线编程参数 2	24
4.	9 闭环	不控制	25
	4.9.1	编码器分辨率	25
	4.9.2	KP 参数	25
	4.9.3	KI 参数	25
	4.9.4	KD 参数	26
	4.9.5	前置滤波参数	26
	4.9.6	后置滤波参数	26
	4.9.7	堵转长度参数	26
	4.9.8	力矩环使能	27
	4.9.9	自动掉电保存使能	27
4.	10 同步	步定位运动模式	27
	4.10.1	同步定位速度	27
	4.10.2	PV 位置	27
4.	11 PV'	T 运动模式	28
	4.11.1	PVT 控制	
	4.11.2	PVT 工作模式	28
	4.11.3	最大 PVT 点数	
	4.11.4	PVT 指针	
	4.11.5	PVT 模式 1 参数	
	4.11.6	PVT 模式 2 参数	
	4.11.7	PVT 模式 3 参数	
	4.11.8	PVT 位置	
	4.11.9	PVT 速度	
		PVT 时间	
		步启停	
4.		影灯控制	
		幻彩灯控制参数	
	4.13.2		
4.		模式	
	4.14.1	PP 模式参数 1	
	4.14.2	PP 模式参数 2	34

	4.	14.3	PP 模式工作时序	35
	4.15	PV框	莫式	38
	4.16	模拟	量定位	38
	4.	16.1	模拟量定位使能	38
	4.	16.2	模拟量起始 AD 码	38
	4.	16.3	模拟量调节间隔	38
	4.	16.4	模拟量调节触发值	39
	4.	16.5	模拟量位置最小值	39
	4.	16.6	模拟量位置最大值	39
	4.17	模拟	量输入	39
	4.18	步进	通知	39
5	用户自	定义程	序	40
	5.1	用户	指令集	40
	5.2	用户	指令详解	41
	5	2.1	CNTI, CNTC 指令	41
	5	2.2	JMP 指令	41
	5	2.3	JNE, JEQ 指令	41
	5	2.4	WAIT 指令	41
	5	2.5	OUT 指令	41
	5	2.6	CMP 指令	41
	5	2.7	RESET_EN 和 PAUSE_EN 指令	42
6	工具软	:件操作	简介	42
	6.1	安装	准备	42
	6.2	软件	安装	42
	6	2.1	驱动安装	42
	6	2.2	工具软件安装	42
	6.3	软件	使用说明	42
	6	3.1	使用准备	42
	6	3.2	主界面	42
	6	3.3	马达运动控制界面	43
	6	3.4	端口测试	44
	6	3.5	离线编程界面	45
	6	3.6	PDO 映射	46
	6	3.7	固件升级	47
	6	3.8	图形编程支持	
	6	3.9	脚本语言支持	49
7				
8	-			
9			2007C2 对象字典表	
10			[OPEN 通讯示例	
	10.1		读写示例	
		0.1.1	SDO 读取	
		0.1.2	SDO 写入	
11	附录二	PDO	配置示例	63

	11.1 PD	O 概述	63
	11.1.1	PDO 的结构—映射参数	63
	11.1.2	PDO 的结构—通信参数	64
	11.1.3	PDO 触发方式	65
	11.2 PD	O 配置示例	66
12	附录四 SDO) abort code error	67

1 引言

1.1 知识产权保护申明

PMC007C2 系列控制器已经申请如下国家专利:

- 控制器方案和方法已申请发明专利保护。
- 控制器电路已申请实用新型专利保护。
- 控制器外观已申请外观专利保护。

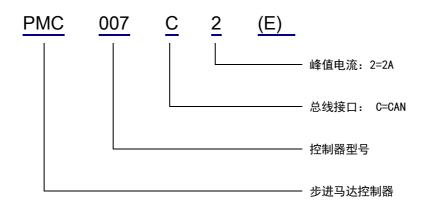
PMC007C2 系列控制器内嵌固件代码,任何试图破坏固件代码保护功能的行为均可视为违反了知识产权保护法案和条例。如果这种行为导致在未经 CQPUSI 授权的情况下,获取软件或其他受知识产权保护的成果,CQPUSI 有权依据该法案提起诉讼制止这种行为。

1.2 免责声明

本使用手册中所述的器件使用信息及其他内容仅为您提供便利,它们可能在未来版本中被更新。确保应用符合技术规范,是您自身应负的责任。CQPUSI对这些信息不作任何形式的声明或担保,包括但不限于使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。CQPUSI对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将 CQPUSI 器件用于生命维持和/或生命安全应用,一切风险由买方自负。买方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障 CQPUSI 免于承担法律责任和赔偿。

2 概述

2.1 主要特性


PMC007C2 是一种微型一体化步进电机细分控制器,可直接安装在 28/42 等系列步进电机的 后盖上,该系列控制器基于 CAN 总线控制。使用 PMC007C2 步进电机控制器可以轻松实现多达 120 个节点的工控网络系统,并能根据用户要求实现基于编码器的闭环控制。PMC007C2 采用工业标准 CANOPEN DS301 控制协议,不仅极大的简化了上层控制系统的复杂性,而且最大限度的保留了控制的灵活性,适合各种高精度、宽范围的工业应用。

2.2 功能特点

- ✓ 9-28V 宽范围单电压供电
- ✓ 输出电流 0.2A ~2A, 指令可调整相电流
- ✓ S曲线加减速自动控制
- ✓ 支持位置模式/速度模式/PV 模式/PP 模式/PVT 模式/模拟量调速/模拟量定位/同步定位模式等多种运动模式
- ✓ 三个限位开关输入,指令可配置紧急停车功能
- ✓ 支持 0/2/4/8/16/32/64/128 等多种细分精度
- ✓ 适用 4/6/8 线两相步进电机
- ✓ PVT 三次样条插补功能支持
- ✓ 大规模多轴数同步控制时序优化
- ✓ 幻彩灯控制
- ✓ 用户自定义程序烧写及离线自动执行
- ✓ 拖拉式图形编程支持
- ✓ LUA 脚本语言编程支持
- ✓ 小体积 28mmx28mmx16mm
- ✓ 精密铝合金外壳,利于保护及散热
- ✓ 自动过温、过流、欠压、过压保护功能

2.3 产品选型与订购信息

订购 PMC00702 时请按以下格式提供具体的型号,以便我们准确及时的为您提供产品:

备注:

E: 闭环型;

下单前请务必先联系销售人员确认所需型号是否处于正常供货状态。

3 接口说明

3.1 接线端口位置

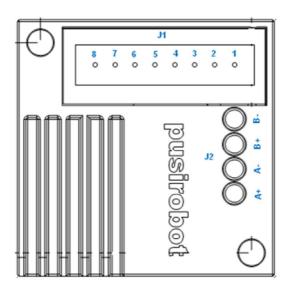


图 3-1

3.2 电机接口 J2

引脚	1	2	3	4
定义	A+	A-	B+	B-

J2 采用螺纹端子连接器, 信号说明如下:

A+, A-: 步进电机 A 相;

B+, B-: 步进电机 B 相;

注意:请保持电机相线顺序一致。(闭环时分别对应红、蓝、黑、绿线序)。

3.3 信号接口及电源接口 J1

引脚	1	2	3	4	5	6	7	8	
定义	VDC	GND	CANH	CANL	DVDD	AIN	ENC1	ENC2	

J1 采用弹簧插拔端子连接器, 信号说明如下:

VDC: 控制器直流电源正输入, 9~28V;

GND: 控制器直流电源地;

DVDD: 控制器+5V 输出, 最大 100mA;

AIN: 模拟量(或外部限位)输入, 0~3.3V;

ENC1:编码器信号输入(或数字输入输出),0~5V;

ENC2: 编码器信号输入(或数字输入输出), 0~5V;

CANH: 连接 CAN 收发器模块;

CANL: 连接 CAN 收发器模块;

注意: 弹簧端子 J1 不支持带电热插拔, 所有接线和插拔操作均应在掉电状态进行。

3.4 CAN 网络连接

使用 CAN 总线连接可达到最大 5000 米的传输距离。图 3-4 提供了一种采用 CAN 总线连接

多台 PMC007C2 控制器组成的网络方案,可兼容 CAN2. 0A 和 CAN2. 0B 两种技术规范,最多可连接 127 个节点。

注意: 建议使用 CAN 总线专用的 120 欧姆屏蔽双绞线,并在双绞线的两端需要各连接一个 120 欧姆的终端电阻。图示中 PTA2C 是第三方 USB-CAN 转换器。

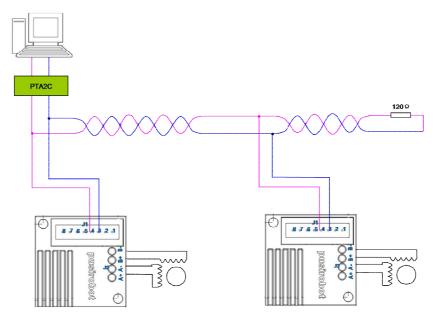


图 3-2

PMC007C2 支持标准的 CANopen DS301 协议, CQPUS I 提供了 PMC007C2 组网时的专用调试工具软件 PUS I CAN,该工具软件目前支持市面上多种主流品牌的 USB2CAN 模块。

3.5 限位开关连接

PMC007C2 控制器的 AIN 引脚及 ENC1/ENC2 引脚(开环时)可用于连接外部限位(零点, Home position)开关,每个引脚的触发方式可以通过指令实时选择。在开环模式下, ENC2 可配置为普通 IO 口输出高电平,如下图 3-3 左,AIN/ENC1(上拉使能)设置为上升沿触发。下图 3-3 右,AIN/ENC1(下拉使能)设置为下降沿触发。

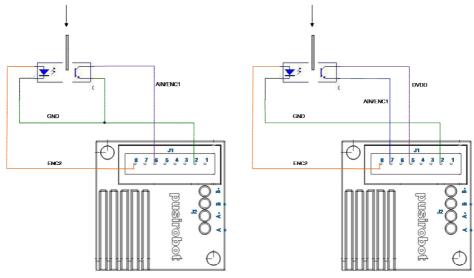


图 3-3

3.6 其他限位开关连接

PMC007C2 的 AIN/ENC1/ENC2 引脚只能接受不超过 5V 的信号输入。当使用 24V 高电压直流三线制 NPN 集电极开路输出型接近开关(如欧姆龙 E2EC/X□C□或者 E2E-X□D1S 系列),连接方式如下图所示,AIN/ENC1/ENC2 需配置成上拉使能。由于输入口仅能接受 5V 电压范围,因此不能连接 24V 直流三线制 NPN 常开型接近开关,或者 24V PNP 型接近开关。

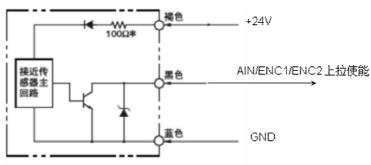


图 3-4

对于带内部电路的 NPN 或 PNP 型传感器,要选择合适的动作模式和触发方式。下图 3-5 左是 PNP 型传感器,动作模式为入光时 ON, AIN/ENC1/ENC2 口配置为下降沿触发,下拉使能。图右是 NPN 型传感器,动作模式为入光时 ON, AIN/ENC1/ENC2 口配置为上升沿触发,上拉使能。

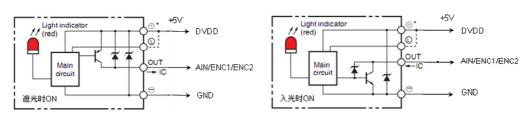


图 3-5

3.7 机械开关连接

当使用机械按钮开关或者继电器触点做限位时,对于 EXT1,连接方式如下图左,采用下降沿触发方式。对于 EXT2,连接方式如下图右,使能内部上拉电阻,采用下降沿触发方式,如下图 3-6 所示。

3.8 模拟量调速

PMC007C2 控制器在离线工作模式下可以使用模拟量调速功能。在这种应用下 AIN 引脚被用作模拟量输入端口,外部输入电压范围 $0^{\circ}3$. $3V_{\circ}$ 当使用 PLC 或其他工控设备输出 $0^{\circ}10V$ 或 $4^{\circ}20mA$ 模拟量控制时,需要特别说明以区分版本。

4 CANopen 通讯

4.1 CANopen 概述

CAL 提供了所有的网络管理服务和报文传送协议,但并没有定义对象的内容或者正在通讯

的对象的类型(它只定义了 how, 没有定义 what),而这正是 CANopen 切入点。CANopen 是在 CAL 基础上开发的,使用了 CAL 通讯和服务协议子集,提供了分布式控制系统的一种实现方案。CANopen 在保证网络节点互用性的同时允许节点的功能随意扩展:或简单或复杂。

CANopen 的核心概念是设备对象字典(OD: Object Dictionary),在其它现场总线(Profibus, Interbus-S)系统中也使用这种设备描述形式。CANopen 通讯通过对象字典(OD)能够访问驱动器的所有参数。注意:对象字典不是 CAL 的一部分,而是在 CANopen 中实现的,PMC007C2 支持的对象字典见附录一所示。

缩写	详 称	说 明
SD0	Service Data Object	用于非时间关键数据,比如参数。
PD0	Process Data Object	用于传输时间关键进程数据(给定值、控制字、
		状态信息等)。
SYNC	Synchronization Message	用于同步 CAN 节点。
EMCY	Emergency Message	用于传输驱动器的报警事件。
NMT	Network Management	用于 CANopen 网络管理。
Heartbeat	Error Control Protocol	用于监测所有节点的生命状态。

4.2 CAN 帧结构

CAN 通过数据帧在主机(控制器)和总线节点之间传输数据,下表为数据帧的结构。

	仲裁垣						
帧头	COB-ID	RTR	控制域	数据域	校验域	应答域	帧尾
	(通讯对象标识符)	(远程请求)				应答域	
1位	11或29位	1位	6位	0~8字节	16位	2位	7位

软件实现收发时,上述帧结构中除了 COB-ID 和数据域,其他均由 CAN 收发控制器硬件完成, 因此用户仅需要限定 COB-ID 和数据域。

注意:本驱动器采用标准帧格式, COB-ID 为 11 位, 暂不支持远程帧。

(COB-ID	的分配如	下:

功能码				NODE ID(节点地址)							
10	9	8	7	6	5	4	3	2	1	0	

控制器参数通过 SDO 读写对象访问,对于需要实时上报到主站的驱动器状态信息可通过配置 PDO 实现。

4.3 配置 CAN 通讯

PMC007 出厂默认设置节点 ID 为 5, 波特率为 125Kbit/s, 用户使用时可以通过配套的 CANOPEN 主站调试工具对其进行修改设置。

4.3.1 节点 ID

对象名称	节点 ID
------	-------

SDO ID	0x2002
对象类型	U8, rw
范围	1-127
存储类型	ROM
默认值	5

4.3.2 波特率

对象名称	波特率
SDO ID	0x2003
对象类型	U8, rw
范围	0, 1, 2, 3, 4, 5, 6, 7, 8
存储类型	ROM
默认值	5

各个取值对应的波特率如下:

- 0: 20Kbit/s
- 1: 25Kbit/s
- 2: 50Kbit/s
- 3: 100Kbit/s
- 4: 125Kbit/s
- 5: 250Kbit/s
- 6: 500Kbit/s
- 7: 800Kbit/s
- 8: 1000Kbit/s

4.3.3 组 ID

对象名称	组 ID
SDO ID	0x2006
对象类型	U8, rw
范围	1-127
存储类型	ROM
默认值	0

在一个 CANOpen 网络中如果需要两个或多个节点的 PVT 运动同步启停时,需要配置此对象。

4.4 系统信息获取

4.4.1 设备节点名称

对象名称	设备节点名称
SDO ID	0x1008
对象类型	string, ro
范围	_
存储类型	ROM
默认值	_

4.4.2 硬件版本

对象名称	硬件版本
SDO ID	0x1009
对象类型	string, ro
范围	
存储类型	ROM
默认值	-

4.4.3 软件版本

对象名称	软件版本
SDO ID	0x100A
对象类型	string, ro
范围	_
存储类型	ROM
默认值	_

4.4.4 系统控制

对象名称	系统控制
SDO ID	0x2007
对象类型	U8, ro
范围	1, 2, 3
存储类型	RAM
默认值	-

系统控制值的定义如下:

- 1:跳转到 boot loader
- 2:保存对象字典参数
- 3:复位出厂设置

注意: 对象字典中存储类型为 ROM 的参数通过 SDO 写入后被临时存到内存中, 如需要永 久保存,则需要执行掉电保存对象字典参数操作。

4.5 电机控制参数

4.5.1 错误状态

对象名称	驱动状态
SDO ID	0x6000
对象类型	U8, rw
范围	bit
存储类型	RAM
默认值	0

驱动状态每位定义如下:

Bit0: TSD, over temperature shutdown

Bit1: AERR, coil A error

Bit2: BERR, coil B error Bit3: AOC, A over current Bit4: BOC, B over current

Bit5: UVLO, low voltage fault 向对应位为写 1 清相应的错误状态。

4.5.2 控制器状态

对象名称	控制器状态
SDO ID	0x6001
对象类型	U8, rw
范围	bit
存储类型	RAM
默认值	0

控制状态每位定义如下:

Bit0: 外部停止 1

Bit1: 外部停止 2

Bit2: 堵转状态

Bit3: busy 状态

Bit4: 外部停止3

Bit5: PVT 模式 3 的 FIF0 为空

Bit6: PVT 模式 3 的 FIF0 下限

Bit7: PVT 模式 3 的 FIF0 上限

除 busy 状态外都可以写 1 清除响应状态

4.5.3 转动方向

对象名称	转动方向
SDO ID	0x6002
对象类型	U8, rw
范围	0, 1
存储类型	RAM
默认值	0

转动方向的值定义如下:

0: 正向

1: 反向

4.5.4 最大速度

对象名称	最大速度(pps)
SDO ID	0x6003
对象类型	\$32, rw
范围	-200000 ~ +200000
存储类型	RAM

默认值	0

注意:速度是一个有符号的变量,为正时代表方向为1,为负时代表方向为0,因此在 位移模式下建议先设置速度, 再设置方向。

4.5.5 相对位移指令

对象名称	相对位移指令
SDO ID	0x6004
对象类型	U32, rw
范围	0x0-0xFFFFFFF
存储类型	RAM
默认值	0

写入步进的步数控制器将根据设定的方向、速度、加速度来控制步进电机转动指定的步 数, 该步数以当前细分设置计算。

当控制器处于 busy 状态时步进命令将被忽略,当错误状态和控制器状态中其他位有效 时,需要先清除后才能启动步进命令。

在闭环模式下,输入单位为编码器分辨率的 1/4,比如 CPR=500,那么输入 2000 时电机 转动一圈。

4.5.6 绝对位移指令

对象名称	绝对位移指令
SDO ID	0x601c
对象类型	\$32, rw
范围	-2147483647 ~ +2147483647
存储类型	RAM
默认值	0

绝对位移指令给出目标位置,控制器将自动计算方向和所需的步进数,根据设定的速度、 加速度来控制步进电机转动指定的位置。

在闭环模式下,输入单位为编码器分辨率的1/4。

4.5.7 终止步进指令

对象名称	终止步进指令
SDO ID	0x6020
对象类型	U8, rw
范围	0
存储类型	RAM
默认值	0

该指令立即终止电机运行,无论当前是位置模式或者速度模式。

4.5.8 工作模式

对象名称	工作模式
SDO ID	0x6005
对象类型	U8, rw
范围	0, 1, 2
存储类型	RAM
默认值	0

电机工作模式的值定义如下:

- 0: 位置模式
- 1: 速度模式 (包含模拟量调速)
- 2: PVT 模式
- 3: 编码器跟随模式(特殊版本固件)
- 4: PP(Profile Position)模式 (包含模拟量定位)
- 5: PV(Profile Velocity)模式

当从速度模式切换到位置模式时, 电机将以设定的减速度缓停。

4.5.9 启动速度

对象名称	启动速度(单位为 pps)	
SDO ID	0x6006	
对象类型	U16, rw	
范围	0-0xFFFF	
存储类型	ROM	
默认值	400	

4.5.10 停止速度

对象名称	停止速度(单位为 pps)	
SDO ID	0x6007	
对象类型	U16, rw	
范围	0-0xFFFF	
存储类型	ROM	
默认值	0	

4.5.11 加速度系数

对象名称	加速度系数
SDO ID	0x6008
对象类型	U8, rw
范围	0-8
存储类型	ROM
默认值	0

4.5.12 减速度系数

对象名称	减速度系数
273% 1470	

SDO ID	0x6009
对象类型	U8, rw
范围	0-8
存储类型	ROM
默认值	0

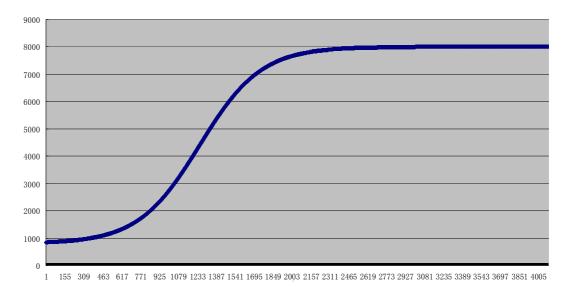


图 4-1

PMC007C2 控制器使用 S 曲线加减速,如图 4-1 所示,启动速度、停止速度、加速度和 减速度均可以单独配置,加减速支持1~8 共8个档位,每个档位对应的加速度值如下表。

档位	加减速度值(PPS ²)
0	不使能加减速
1	77440
2	48410
3	27170
4	21510
5	14080
6	10460
7	6915
8	5210

4.5.13 细分数

对象名称	细分数
SDO ID	0x600A
对象类型	U16, rw
范围	0, 2, 4, 8, 16, 32, 64, 128, 256
存储类型	ROM
默认值	0

4.5.14 最大相电流

对象名称	最大相电流
SDO ID	0x600B
对象类型	U16, rw
范围	0-6000
存储类型	ROM
默认值	0

4.5.15 电机位置

对象名称	电机位置			
SDO ID	0x600C			
对象类型	\$32, rw			
范围	-2147483648-2147483647			
存储类型	RAM			
默认值	0			

每当一个步进命令被下达执行时,控制器根据下达的步进数自动记录当前位置,用一个 带符号的整数表示,正数表示顺时针方向转动位置,负数表示逆时针方向转动位置。

在开环模式下, 当前位置的值是以步数来计算的, 因此当用户需要更改细分数时, 应当 先读取该位置信息再更改细分数,以避免位置换算错误。在闭环模式下,以编码器分辨率的 1/4 为单位。

在开环模式下,控制器掉电时,位置信息自动清零。

4.5.16 电流衰减

对象名称	电流衰减系数
SDO ID	0x600D
对象类型	U8, rw
范围	0-3
存储类型	ROM
默认值	0

4.5.17 电机使能

对象名称	电机使能
SDO ID	0x600E
对象类型	U8, rw
范围	0, 1
存储类型	RAM
默认值	1

电机使能的值定义如下:

- 0: 脱机
- 1: 使能电机

设置脱机后控制器立即释放对电机的控制,当前步进指令被终止,相电流降为0,后续 上位机发出的所有步进指令均不被处理,直到用户重新设置使能电机。

4.5.18 堵转设置(开环)

对象名称	设置堵转后电机是否停止
SDO ID	0x601b
对象类型	Record
范围	0-1
存储类型	ROM
默认值	0

4.5.19 堵转参数 (保留功能)

对象名称	置堵转检测参数			
SDO ID	0x6017			
对象类型	U16, rw			
范围	bit			
存储类型	ROM			
默认值	0			

检测参数每位定义如下:

Bit0: 必须设为 0;

Bit1~3: 采样长度;

Bit4~5: 延时计数;

Bit6~7: 除数因子;

Bit8~15: 触发阈值;

PMC007C2 控制器利用两相绕组的反向电动势实现无传感器堵转检测, 其准确度受电流、 细分、电压、电机参数等多种因素影响,其中电机转速和相电感的影响尤其显著。以下是几 个典型应用场景的参考配置表:

电机类型	相电感 mH	电流 mA	电压 V	速度范围 pps	细分	堵转参数
28	5. 7	900	24	1600-16000	8	0x64e6
42	2. 8	1600	24	1600-16000	8	0x64b4
57	1. 1	3000	24	1600-16000	8	0xc8b2

4.5.20 实时速度(闭环)

对象名称	C时速度(pps)			
SDO ID	0x6030			
对象类型	\$32, ro			
范围	-300000 ~ +300000			
存储类型	RAM			
默认值	0			

实时速度是一个有符号的变量,为正时代表方向为1,为负时代表方向为0。

4.6 外部紧急停止

PMC007C2 控制器提供一个专用限位开关输入口 EXT1,可用作紧急停止或零点搜寻功能。 当使能紧急停止功能后,如果对应的输入引脚检测到有效的触发沿,控制器随即锁住电机,并停止响应步进命令,用户可以读取控制器状态,查看是哪一个输入引脚触发了紧急停止。只有当用户清除对应的状态位后,控制器才会继续响应新的步进命令。

对象名称	外部紧急停止
SDO ID	0x600F
对象类型	Record
存储类型	ROM
参数个数	2

子索引 0x01: 外部紧急停止使能

对象类型	U8, rw
范围	bit
默认值	0

每个外部紧急的使能用 1bit 表示, 0 表示禁止, 1 表示使能, 其定义如下:

bit0:外部紧急停止1使能设置 bit1:外部紧急停止2使能设置 bit4:外部紧急停止3使能设置

子索引 0x02: 外部紧急停止触发模式

对象类型	U8, rw
范围	bit
默认值	0

每个外部紧急的停止触发模式用 1bit 表示,0 表示下降沿触发,1 表示上升沿触发, 其定义如下:

bit0:外部紧急停止1触发模式 bit1:外部紧急停止2触发模式 bit4:外部紧急停止3触发模式

子索引 0x03: 传感器类型

对象类型	U8, rw
范围	0-1
默认值	0

传感器类型取值含义如下:

- 0: 触发模式配置为上升沿时,控制器配置为内部下拉电阻;配置为下降沿时,控制器配置内部为上拉电阻;通常用于 NPN 类型的传感器;
- 1: 触发模式配置为上升沿时,控制器配置为内部上拉电阻;配置为下降沿时,控制器配置内部为下拉电阻;通常用于 PNP 类型的传感器;

外部紧急停止触发延时可通过 0x601A 对象修改,控制器在检测的边沿信号后延时设置的时间,再检测其电平状态是否正确,正确则触发电机紧急停止,否则电机继续转动。

对象名称	EXT1/EXT2/EXT3 稳定延时(ms)
SDO ID	0x601a
对象类型	Record
范围	0~200
存储类型	ROM
默认值	100

4.7 通用 IO 端口

PMC007C2 控制器提供 7 个通用 10 (GP10) 端口、2 个外部紧急停止输入 (EXT) 端口和 2 个编码器输入 (ENC) 端口。

4.7.1 通用 IO 端口设置

对象名称	通用 10 端口设置
SDO ID	0x6011
对象类型	Record
存储类型	ROM
参数个数	2

子索引 0x01: 10 端口方向

对象类型	U16, rw
范围	bit
默认值	0

每个 10 端口方向用 1bit 表示, 0 为输入, 1 为输出, 各位的含义如下:

Bit0: GPI01

Bit1: GPI02

Bit2: GPI03

Bit3: GPI04

Bit4: GPI05

Bit5: GPI06

Bit6: GPI07

Bit7: EXT1

Bit8: EXT2

Bit9: EXT3/ENC1

Bit10: ENC2

Bit11: GPI08

其中紧急停止输入端口和编码器输入端口方向固定为输入端口,不可配置。

注意: GP100~GP107未引出至控制器接口,仅供离线编程使用。

子索引 0x02: 10 端口配置

对象类型	U32, rw
范围	0-0x3fffff
默认值	0

每个端口的配置用 2bit 表示,如果 10 端口配置为输入端口,其值的含义如下:

0: FLOATING

1: IPU

2: IPD

3: AIN

如果 10 端口配置为输出端口, 其值的含义如下:

0 - 0

1: PP

10 端口配置各为的定义如下:

Bit1-0: GPI01

Bit3-2: GP102

Bit5-4: GP103

Bit7-6: GPI04

Bit9-8: GP105

Bit11-10: GPI06

Bit13-12: GPI07

Bit15-14: EXT1

Bit17-16: EXT2

Bit19-18: EXT3/ENC1

Bit21-20: ENC2

Bit23-22: GPI08

4.7.2 通用 IO 端口值

对象名称	通用 10 端口值
SDO ID	0x6012
对象类型	U16, rw
范围	bit
存储类型	RAM
默认值	0

每个 I0 端口的值用 1bit 表示, 0 表示高电平, 1 表示低电平, 写入值对输入端口 无效, 各位的含义如下:

Bit0: GPI01 的值

Bit1: GPI02 的值

Bit2: GPI03 的值

Bit3: GPI04的值

Bit4: GPI05 的值

Bit5: GP106 的值

Bit6: GP107 的值

Bit7: EXT1 的值

Bit8: EXT2的值

Bit9: EXT3/ENC1 的值

Bit10: ENC2的值

Bit11: GPI08 的值

4.8 离线编程

4.8.1 离线编程参数 1

对象名称	离线编程参数 1
SDO ID	0x6018
对象类型	Record
存储类型	ROM
参数个数	2

子索引 0x01: 离线编程数据指令数

对象类型	U8, rw
范围	0-100
默认值	0

子索引 0x02: 离线自动运行使能

对象类型	U8, rw
范围	0, 1
默认值	0

离线自动运行值定义:

0: 不使能离线自动运行

1: 使能离线自动运行

4.8.2 离线编程参数 2

对象名称	离线编程参数 2
SDO ID	0x6019
对象类型	Record
存储类型	RAM
参数个数	5

子索引 0x01: 离线程序指针

对象类型	U8, rw
范围	0-100
默认值	0

子索引 0x02: 离线指令

对象类型	U32, rw
范围	1
默认值	-

离线指令定义见用户自定义程序章节。

子索引 0x03: 保持离线指令

对象类型	U8, rw
范围	0, 1
默认值	0

写入1保存所有离线指令。

子索引 0x04: GPI0 mask

对象类型	U16, rw
范围	bit
默认值	0

子索引 0x05: 运行指令

对象类型	U16, rw
范围	0, 1
默认值	0

写入1运行离线程序指针所指向的指令。

4.9 闭环控制

PMC007C2 支持 200-1600CPR 增量式光电编码器,采用 PID 方式实现闭环控制。以下是 闭环相关参数说明。

4.9.1 编码器分辨率

对象名称	编码器分辨率
SDO ID	0x6021
对象类型	U16, rw
范围	200, 400, 500, 600, 800, 1000, 1200, 1600
存储类型	ROM
默认值	500

4.9.2 KP 参数

对象名称	KP 参数
SDO ID	0x6023
对象类型	U8, rw
范围	1-255
存储类型	ROM
默认值	48

该参数影响系统暂态响应特性。

4.9.3 KI 参数

对象名称	KI 参数
SDO ID	0x6024

对象类型	U8, rw
范围	1-255
存储类型	ROM
默认值	8

该参数影响系统累积误差特性。

4.9.4 KD 参数

对象名称	KD 参数
SDO ID	0x6025
对象类型	U8, rw
范围	1-255
存储类型	ROM
默认值	8

该参数影响系统瞬态响应特性。

4.9.5 前置滤波参数

对象名称	前置滤波参数
SDO ID	0x6026
对象类型	U8, rw
范围	1–128
存储类型	ROM
默认值	8

该参数影响系统速度特性,高速或者细分较高时建议使用较大的参数值,但是不能超 过当前细分数。

4.9.6 后置滤波参数

对象名称	后置滤波参数
SDO ID	0x6027
对象类型	U16, rw
范围	1-255
存储类型	ROM
默认值	8

该参数暂时保留。

4.9.7 堵转长度参数

对象名称	堵转长度参数
SDO ID	0x6028
对象类型	U16, rw
范围	1-255
存储类型	ROM
默认值	64

判断堵转的门限值,以当前细分单位计。

4.9.8 力矩环使能

对象名称	力矩环使能
SDO ID	0x6029
对象类型	U8, rw
范围	0-1
存储类型	ROM
默认值	1

不使能力矩环时, PID 参数不生效,控制器工作在位置环模式。

4.9.9 自动掉电保存使能

对象名称	自动掉电保存使能
SDO ID	0x602A
对象类型	U8, rw
范围	0-1
存储类型	ROM
默认值	0

使能后控制器自动检测系统掉电,并将当前位置写入 EEPROM 中。

4.10 同步定位运动模式

对象名称	同步定位运动控制
SDO ID	0x601D
对象类型	Record
存储类型	RAM
参数个数	2

同步定位运动模式可以先设置好指定节点要运行的绝对位置和速度, 再通过同步启动 指令可使多个轴同时运动。

4.10.1 同步定位速度

子索引 0x01:同步定位速度

对象类型	S32, rw
范围	-2147483648-2147483647
默认值	0

4.10.2 PV 位置

子索引 0x02:同步定位位置

对象类型	\$32, rw
范围	-2147483648-2147483647
默认值	0

4.11 PVT 运动模式

对象名称	PVT 运动对象
SDO ID	0x6010
对象类型	Record
存储类型	RAM
参数个数	19

PMC007 支持三种 PVT 控制模式,各模式适用于不同应用场景。

模式 1 为单次运动模式,当控制器执行完上位机写入的 PVT 序列数据后,一次 PVT 运动结束。

模式 2 为循环运动模式,上位机可在写入的 PVT 序列数据中,指定索引循环执行设置的次数后结束 PVT 运动。

模式 3 为 FIFO 控制模式,上位机不停的向控制器写入 PVT 序列,控制器不停的取出 PVT 数据执行 PVT 运动。

另外 PMC007 支持组 ID 设置,用于同一网络中任意两个或多个节点同步启动和停止 PVT 运行。PVT 运动模式的使用流程请参考 PUSICAN 工具带的脚本范例。

4.11.1 PVT 控制

子索引 0x01:PVT 控制操作

对象类型	U8, rw
范围	0-3
默认值	0

- 0: 终止 PVT 运动;
- 1: 启动 PVT 运动;
- 2: 将 PVT 位置、速度和时间对象数据写入队列中;
- 3: 清除队列中的所有 PVT 数据;

4.11.2 PVT 工作模式

子索引 0x02:PVT 工作模式

对象类型	U8, rw
范围	0-2
默认值	0

- 0: PVT 模式 1;
- 1: PVT 模式 2;
- 2: PVT 模式 3;

4.11.3 最大 PVT 点数

子索引 0x03:最大 PVT 点数

对象类型	U16, rw
范围	0-1000
默认值	0

4.11.4 PVT 指针

子索引 0x04: 当前 PVT 指针

对象类型	U16, r
范围	0-1000
默认值	0

4.11.5 PVT 模式 1 参数

1. PVT 模式 1 起始索引 子索引 0x05:PVT 模式 1 起始索引

对象类型	U16, rw
范围	0-1000
默认值	0

2. PVT 模式 1 结束索引

子索引 0x06: PVT 模式 1 结束索引

对象类型	U16, rw
范围	0-1000
默认值	0

4.11.6 PVT 模式 2 参数

1. PVT 模式 2 加速阶段起始索引

子索引 0x07:PVT 模式 2 加速阶段起始索引

对象类型	U16, rw
范围	0-1000
默认值	0

2. PVT 模式 2 加速阶段结束索引

子索引 0x08:PVT 模式 2 加速阶段结束索引

对象类型	U16, rw
范围	0-1000
默认值	0

3. PVT 模式 2 循环阶段起始索引

子索引 0x09:PVT 模式 2 循环阶段起始索引

对象类型	U16, rw
范围	0-1000
默认值	0

4. PVT 模式 2 循环阶段结束索引

子索引 0x0A:PVT 模式 2 循环阶段结束索引

对象类型	U16, rw
范围	0-1000
默认值	0

5. PVT 模式 2 循环阶段次数

子索引 0x0B:PVT 模式 2 循环次数

对象类型	U16, rw
范围	0-65535
默认值	0

6. PVT 模式 2 减速阶段起始索引

子索引 0x0C:PVT 模式 2 减速阶段起始索引

对象类型	U16, rw
范围	0-1000
默认值	0

7. PVT 模式 2 减速阶段结束索引

子索引 0x0D:PVT 模式 2 减速阶段结束索引

对象类型	U16, rw
范围	0-1000
默认值	0

4.11.7 PVT 模式 3 参数

1. PVT 模式 3 FIF0 深度

子索引 0x0E:PVT 模式 3 FIF0 深度

对象类型	U16, r
范围	0-1000
默认值	0

2. PVT 模式 3 FIF0 下限

子索引 0x0F:PVT 模式 3 FIF0 下限

对象类型	U16, rw
范围	0-1000
默认值	0

工作在 PVT 模式 3 时, FIF0 深度小于此对象设定的值时, 控制器状态对象的 FIF0 下限位置位。

3. PVT 模式 3 FIF0 上限

子索引 0x10:PVT 模式 3 FIF0 上限

对象类型	U16, rw
范围	0-1000
默认值	0

工作在 PVT 模式 3 时, FIF0 深度大于此对象设定的值时, 控制器状态对象的 FIF0 上限位置位。

4.11.8 PVT 位置

子索引 0x11:PVT 位置

对象类型	\$32, rw	
范围	-2147483648-2147483647	
默认值	0	

当前 PVT 点期望运动到的绝对位置。

4.11.9 PVT 速度

子索引 0x12:PVT 速度

	. —
对象类型	\$32, rw
范围	-2147483648-2147483647
默认值	0

当前 PVT 点期望的运动速度,单位 pps。

4.11.10 PVT 时间

子索引 0x13:PVT 时间

对象类型	\$32, rw
范围	0-2147483647
默认值	0

从上一个 PVT 点到当前 PVT 点的时间,单位为 ms。

4.12 同步启停

PMC007 通过对标准 CANOpen 的 NMT 指令进行扩展实现了一个网络中两个或多个节点的 PVT 运动同步启停。

标准 NMT 格式

COB-ID	Byte0	Byte1
0x000	CS	Node-ID

扩展的 NMT 指令在不影响标准协议的情况下,对 Byte0 和 Byte1 添加了新的定义。Byte0 定义如下:

命令	功能
10	启动同步定位运动
11	启动 PVT 运动
12	停止 PVT 运动

Byte1 为组 ID, 只有控制器收到的组 ID 与自身的组 ID 相匹配时,才执行相应的命令操作。

4.13 幻彩灯控制

在开环版本中 PMC007C2 支持 WS2812B 系列幻彩灯,且时序可调,通过 ENC2 端口输出控制。

4.13.1 幻彩灯控制参数

对象名称	幻彩灯控制参数
SDO ID	0x601E
对象类型	Record
存储类型	ROM
参数个数	4

用于设置幻彩灯的控制时序。

1. 子索引 0x01:开关

对象类型	U8, rw
范围	0-1
默认值	0

为 1 打开幻彩灯控制功能,用 ENC2 端口输出控制。

2. 子索引 0x02:控制频率

对象类型	U32, rw
范围	0- 4294967295
默认值	0

3. 子索引 0x03:低电平占空比

对象类型	U8, rw
范围	0- 255
默认值	0

4. 子索引 0x04: 高电平占空比

对象类型	U8, rw
范围	0- 255
默认值	0

4.13.2 幻彩灯颜色输出

对象名称	幻彩灯颜色
SDO ID	0x601F
对象类型	U32, rw
范围	0x000000-0xFFFFF
存储类型	RAM
默认值	0

0-7 位控制红色, 8-15 位控制绿色, 16-23 位控制蓝色。

4.14 PP 模式

工作模式设置为 4 进入(Profile Position Mode) PP 模式,该工作模式采用梯形加减 速,可单独设置启动速度、停止速度、加速度、减速度、运行速度和目标位置。在 PP 模式 运行过程中可接收上位机写入一组新的参数,最后通过写控制字让控制器以从前一次运动参 数平滑过度到新的参数运行,或者在旧的参数运行完成后再以新的参数运行,具体的控制器 行为见 5.13.3 节描述, 5.13.1 和 5.13.2 描述相关控制对象。

4.14.1 PP 模式参数 1

PP 模式参数 1 为 ROM 参数, 可掉电保存。

对象名称	PP 模式参数 1
SDO ID	0x602d
对象类型	Record
存储类型	ROM
参数个数	4

4.14.1.1 加速度

子索引 0x01: 加速度, 单位 pps/s

对象类型	U32, rw
范围	>150
默认值	32000

4.14.1.2 减速度

子索引 0x02: 减速度, 单位 pps/s

对象类型	U32, rw
范围	>150
默认值	32000

4.14.1.3 启动速度

子索引 0x03: 启动速度

对象类型	U32, rw
范围	>150
默认值	600

4.14.1.4 停止速度

子索引 0x04: 停止速度

对象类型	U32, rw
范围	>150
默认值	600

4.14.2 PP 模式参数 2

PP 模式参数 2 为 RAM 参数,上电后参数复位成默认值。

对象名称	PP 模式参数 1
SDO ID	0x602e
对象类型	Record
存储类型	ROM
参数个数	4

4.14.2.1 控制字

子索引 0x01: 控制字

对象类型	U16, rw
范围	0-0xFFFF
默认值	0

控制字对象 (602e, 1) 中的下述位具有特别的功能:

- 位 4: 启动运行任务。当值由"0"转换至"1"时,执行运行任务。
- 位 5: 当该位被设为"1"时,将立即执行由位 4 触发的运行任务。若该位被设为"0",将先完成正在执行的运行任务,然后才启动下个运行任务。
- 位 6: 当值设为"0"时,目标位置(602e,4)是绝对位置,当值设为"1"时,目标位置是相对位置。
- 位 8 (Halt): 该位为 PV 模式应用, 当该位的值由"1"变为"0"时, 电机将以预设的 启动斜坡加速至目标速度。当该位的值由"0"变为"1"时, 电机将减速并停止运动。
- 位 9: 当该位被设定时,将在到达首个目标位置后改变速度。也就是说在到达首个目标前不会执行制动,因为电机不应停在该位置上。

4.14.2.2 状态字

子索引 0x02: 状态字

对象类型	U16, rw
范围	0-0xFFFF
默认值	0

状态字对象(602e, 2)中的下述位具有特别的功能:

- 位 10 : 当最后的目标已到达,该位将被设为"1"。
- 位 12: 该位确认收到有效的新目标点。该位将与控制字中的位"新目标点"同步设定和复位。

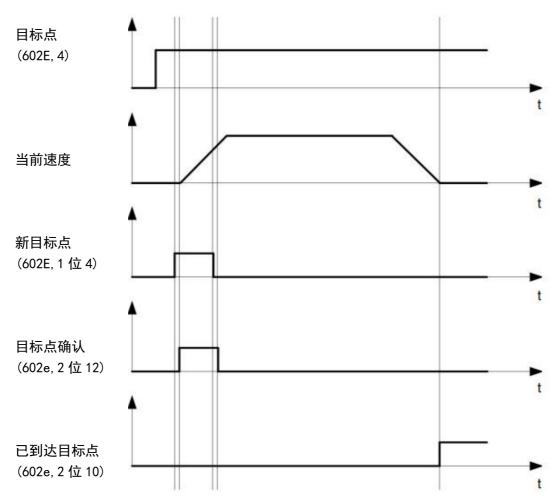
例外情况:在一个运行任务尚未完成、下个运行任务应在该任务完成后才执行时,启动新的运行任务。在这种情况下,只有当命令已被接受且控制器已准备好执行新的运行任务时,该位才会被复位。

当一个运行任务启用并已设定好另一个运行任务时,所有其它的运行任务都将被忽视,为了显示这种状况,该位被设定。

4.14.2.3 运行速度

子索引 0x03: 运行速度,符号代表转动方向,正号正转,负号反转

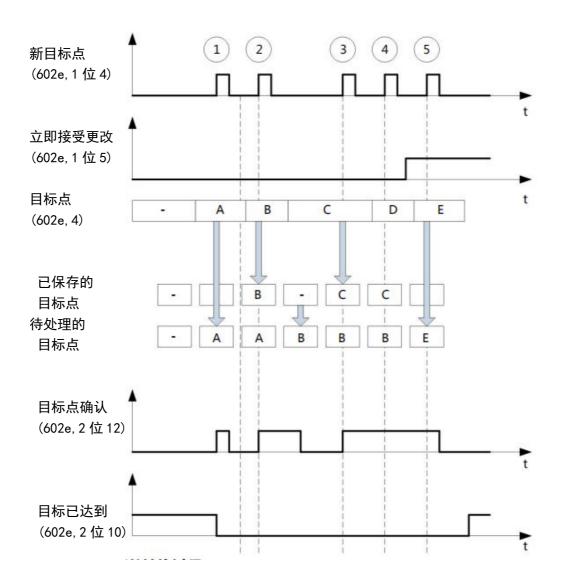
对象类型	\$32, rw
范围	-300000150, 150-300000
默认值	32000


4.14.2.4 目标位置

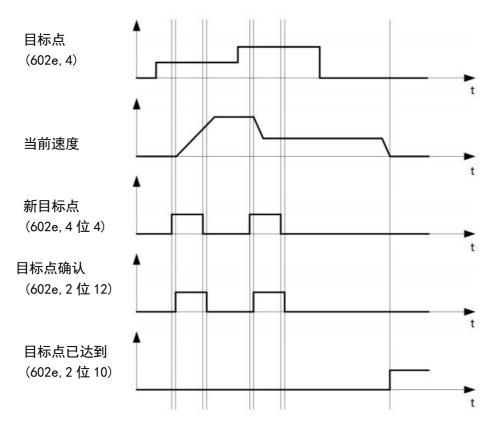
子索引 0x04: 运行速度

对象类型	\$32, rw
范围	-2^31~2^31
默认值	0

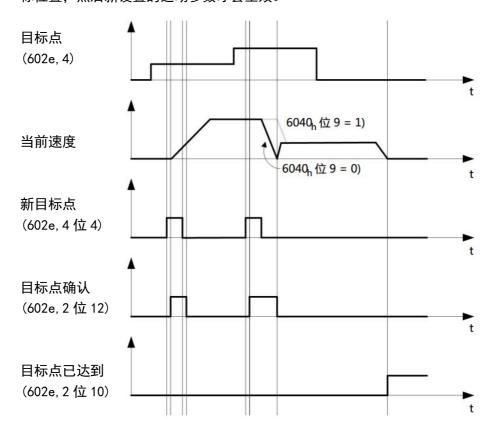
4.14.3 PP 模式工作时序


在目标位置对象(602e, 4)中设置新的目标位置。接着,将设定控制字对象(602e, 1)中的位 4,从而触发运行命令。若目标位置有效,控制器将通过对象状态字中的位 12 进行答复,定位运行开始。到达位置时,状态字中的位 10 将立即被设为"1"。

其它的运行命令可以存储在缓存中(见下图中的时间点 1),状态字对象(602e, 2 设置目标点响应)中的位 12 将被设为"0"。在运动向目标位置期间,可向控制器下发第二个目标位置,以做准备。此时,可以重新设定全部参数,例如速度、加速度、减速度等(时间点 2)。若缓存再次空闲,下一个时间点可进入队列(时间点 3)。


若缓存已满,新的目标点将被忽视(时间点 4)。若控制字对象(602e, 1 位: "立即改变目标点")中的位 5 被设定,控制器工作时将不使用缓存,新的运行命令将被直接执行(时间点 5)。

第二个目标位置的转换过程


下图展示了在向第一个目标位置运动时,第二个目标位置的转换过程。图中,控制字对象(602e, 1)的位 5 被设为"1", 新的目标值将被立即接受。

运动向目标位置的方法

若控制字对象(602e, 1)中的位 9 为"0",将首先完全行进至当前的目标位置。在本示例中,首个目标位置的最终速度等于零。若位 9 被设为"1",将保持最终速度,直至到达目标位置,然后新设置的运动参数才会生效。

4.15 PV 模式

工作模式设置为 5 进入 (Profile Velocity Mode) PP 模式,该工作模式采用梯形加减 速,与PP模式共用启动速度、停止速度、加速度、减速度和运行速度参数。

控制字的位 8 (Halt)的值由"1"变为"0"时,电机将以预设的启动斜坡加速至目标速度。 当该位的值由"0"变为"1"时, 电机将减速并停止运动。 在运动过程中可下发新的运行速度, 控制器将平滑过度到新设定的速度。

4.16 模拟量定位

PMC007C2 有一个模拟量信号输入端口,内部采用 12 位 ADC,可通过软件配置成模拟 量定位模式。先配置模拟量定位相关参数,最后打开模拟量定位使能。下面 qf 详细描述模 拟量相关对象。

对象名称	模拟量定位设置
SDO ID	0x602f
对象类型	Record
存储类型	ROM
参数个数	6

4.16.1 模拟量定位使能

子索引 0x01: 模拟量定位使能, 1 打开, 0 关闭

对象类型	U8, rw
范围	0、1
默认值	0

4.16.2 模拟量起始 AD 码

子索引 0x02: 模拟量起始 AD 码,对应模拟量位置最小值

对象类型	U16, rw
范围	0、1
默认值	0

4.16.3 模拟量调节间隔

子索引 0x03: 模拟量调节间隔, 单位 ms

控制器间隔此时间检查一次模拟量输入值,如果本次获取的 AD 输入值与上一次的输入 值之差大于门限值,将进行一次位置调节

对象类型	U16, rw
范围	0-65535
默认值	100

4.16.4 模拟量调节触发值

子索引 0x04: 模拟量调节触发值,为 AD 码,当本次获取的 AD 码与上一次获取的 AD 码 之差大于此值时,控制器将进行一次位置调节

对象类型	U16, rw
范围	0-65535
默认值	30

4.16.5 模拟量位置最小值

子索引 0x05: 模拟量起始 AD 码对应的绝对位置

对象类型	\$32, rw
范围	-2 ³¹ ² 31
默认值	0

4.16.6 模拟量位置最大值

子索引 0x06: AD 码为 4095 时对应的绝对位置

对象类型	S32, rw
范围	-2^31~2^31
默认值	64000

4.17 模拟量输入

PMC007C2 支持 0-24V 电压模拟量输入, 12 位 ADC。

对象名称	模拟量输入
SDO ID	0x602B
对象类型	U16, rw
范围	0~4095
存储类型	RAM
默认值	0

4.18 步进通知

PMC007C2 控制器在位置模式或速度模式下可设置步进通知,即在一次步进中电机 运动到达某个设定位置时,控制器可以通过 TPDO 上报步进到位置通知,支持两个步进通 知位置点。

对象名称	步进通知设置
SDO ID	0x602C
对象类型	Record
存储类型	RAM
参数个数	3

子索引 0x01: 步进通知状态

对象类型	U8, rw
范围	bit
默认值	0

每个 IO 端口方向用 1bit 表示, 0 为输入, 1 为输出, 各位的含义如下:

Bit0: 步进通知位置点 1 有效; Bit1: 步进通知位置点 2 有效;

该对象可映射到 TPDO,对象值发生改变时将自动上报到上位机。

子索引 0x02: 步进通知位置 1(绝对位置)设置

对象类型	\$32, rw
范围	-2147483647 ~ +2147483647
默认值	0

子索引 0x03: 步进通知位置 2(绝对位置)设置

对象类型	\$32, rw
范围	-2147483647 ~ +2147483647
默认值	0

5 用户自定义程序

PMC007C2 控制器可以配置为离线工作方式,在这种方式下,控制器开机上电后自动执行用户自定义的程序代码,该代码预先通过 CQPUSI 工具软件编译后烧录到 EEPROM 中。

当 PMC007C2 控制器工作在离线方式时, CAN 通讯接口仍然可响应用户在线指令。 PMC007C2 控制器支持的最大用户指令数为 100 条。

关于用户自定义程序的详细范例,请参照《控制器自定义编程指南》。

5.1 用户指令集

PMC007C2 控制器支持以下用户自定义指令,这些命令均通过 CQPUSI 提供的工具软件自动与控制器进行交互,用户不需要自己编写程序,只需要在"自定义编程"界面进行操作即可。

指令	用途	选项	数据范围
ROT	转动给定的步数	0	1~65536
MIC	设定细分数	0	0/2/4/8/16/32/64/128/256
DIR	设定转动方向	0	0: 反向, 1: 正向
EXTEN	设定外部紧急停止使能	0	0/1
FREE	设置脱机使能	0	0/1
CLR2	清除 ext_stop2 标志位	0	
CLR1	清除 ext_stop1 标志位	0	
VSET	设置转动速度	0	0-6000PPS
ACC	设置加速度	0	3–6
TRIG	设置外部触发方式	0	0-3
CNTI	内部计数器加 1	0	

CNTC	内部计数器清零	0	
JMP	无条件跳转	0	0-50
JNE	不相等跳转	0	0-50
JEQ	相等时跳转	0	0-50
WAIT	等待条件	1-7	0/1
OUT	端口输出	1-5	0/1
CMP	比较	1-6	0~65536
RESET_EN	设置GPI1外部复位停止使能	0-1	0-50
PAUSE_EN	设置 GP12 外部暂停使能	0-1	0

5.2 用户指令详解

以下对部分指令的用途进行解释。

5.2.1 CNTI, CNTC 指令

这两个指令用于操作内部计数器进行累加和清零,内部计数器可以在用户自定义程序中 用作循环计数功能。计数器的值可以在 CMP 命令中作为比较条件。

5.2.2 JMP 指令

无条件跳转指令,将程序跳到指定的程序位置。

5.2.3 JNE, JEQ 指令

条件跳转指令,根据 CMP 指令产生的标志位进行跳转。如果标志位为 1, JEQ 指令将程 序跳转到指定位置;如果标志位为 0, JNE 指令将程序跳转到指定位置。

5.2.4 WAIT 指令

暂停程序执行,直到选项的条件满足后才执行下一条指令。共有9个选项可以选择,详 细请参见 CQPUSI 工具软件中"自定义编程"界面设置。

注意: 当使用 ROT 指令发起电机转动时, 自定义程序并不会等到转动命令完成, 而是立 即执行下一条指令,因此一般情况下转动命令后都要紧跟一条 WAIT 指令。

5.2.5 OUT 指令

输出值到选择的端口,可选择的端口为 GP01~5。该指令每次只能输出一个端口值。

5.2.6 CMP 指令

比较选项是否与设定值相等。选项可以是内部计数器的值,或者任何一个输入端口,或 者外部停止状态位,或者所有输入端口作为总线数据比较,共有9个选项可以选择。比较后 的结果将置内部标志位,如果比较相等,标志位置1,否则置0.

5.2.7 RESET_EN 和 PAUSE_EN 指令

控制器可选择绑定 GPI1 为外部复位停止键输入, GPI2 为外部暂停/启动键输入。这些功能只能通过离线程序来使能,并且只需要在程序中做一次即可全局生效,因此用户应当尽量将这两条语句放在离线程序的最开始。当外部外部暂停/启动功能使能, GPI2 上的低电平脉冲将交替的启动或暂停离线程序的执行,但是已经被下达的转动命令将不会停止。当外部复位停止功能使能, GPI1 上的低电平脉冲将立即停止所有操作指令,包括正在执行中的转动命令,并将程序指针指向设定的位置。

6 工具软件操作简介

PMC007C2 可通过 CQPUSI 工具软件 PUSICAN 进行命令调试、IO 端口设置检测、步进电机参数调试和自定义编程等。

6.1 安装准备

工具软件 PUSICAN 需要 CAN 适配器 (USB2CAN 或 PCI2CAN) 的支持,当前工具软件已经支持多种市面上常见的 USB2CAN 适配器,如需要支持其它型号的适配器,请联系销售人员。

6.2 软件安装

6.2.1 驱动安装

适配器驱动安装请按照适配器使用说明进行操作。

6.2.2 工具软件安装

调试工具 PUSICAN 属于绿色免安装软件,下载后解压到专用文件夹内,双击 pusican. exe即可运行。

6.3 软件使用说明

6.3.1 使用准备

将 PMC007C2 和 CAN 适配器按图 3-2 的方式连接到电脑,然后给 PMC007C2 上电,正常上电后 LED 灯将以 2.5Hz 的频率闪烁。

6.3.2 主界面

双击桌面 PUSICAN 快捷方式图标进入主界面。如图 6-1 所示:

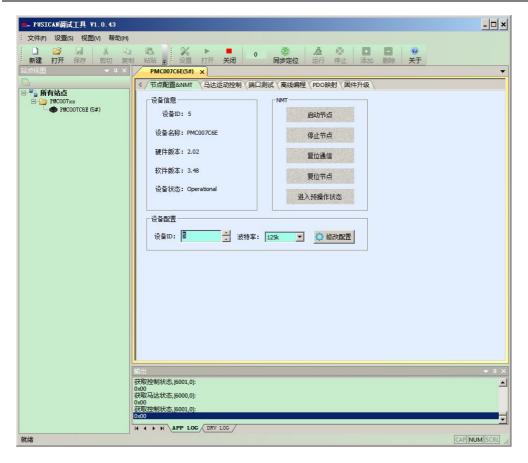


图 6-1

在主界面,点击"设置"图标选择适配器和波特率,PMC007C2 控制器出厂默认波特率为 125khz。点击"打开"图标,调试工具将启动适配器扫描站点,所有在线活动的设备均会列在左边的树形列表里,双击想要操作的站点,右边工作区将会显示该设备的控制界面。

启动节点:使 PMC007C2 进入可操作状态(Operational);

停止节点: 使 PMC007C2 进入停止状态(Stopped), 节点不再响应任何 SDO 命令;

复位通信: SDO 修改通信参数后可通过此操作使通信参数立即生效;

复位节点:通知节点重新进入复位上电流程;

预操作状态:在该状态,节点等待主站的网络命令,接收主站的配置请求,因此可以接收和发送除了PDO以外的所有报文;

6.3.3 马达运动控制界面

在主界面点击"马达驱动设置"进入电机控制界面,如图 6-2 所示。

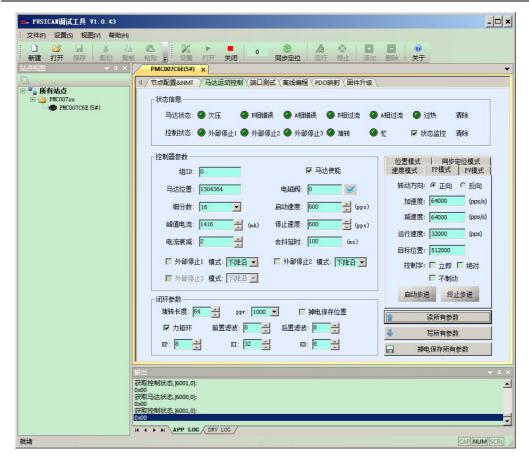


图 6-2

在修改各项参数之前,建议首先点击"读所有参数",从节点处更新当前显示值。设置好控制参数后点"写所有参数"将使设置的参数写入控制器并生效,点击"掉电保存所有参数"将参数写入设备的FLASH永久保存。

当"马达状态"的标识出现错误时,必须要先清除后才能再次启动步进。

6.3.4 端口测试

在主界面点击"离线编程"进入用户自定义编程界面,如图 6-3 所示。

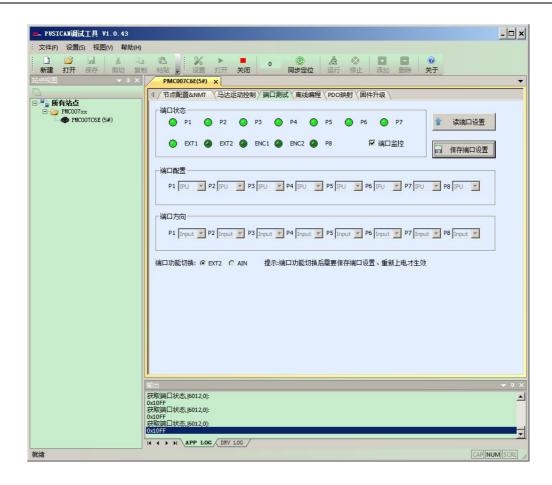


图 6-3

进入该界面后软件默认会监控端口状态,关闭"端口监控",可设置端口方向,更改端口配置。

6.3.5 离线编程界面

在主界面点击"离线编程"进入用户自定义编程界面,如图 6-4 所示。

进入该界面后软件将发送指令关闭离线自动运行,单击"读命令 Buffer"读取设备的 所有离线编程指令显示到界面。

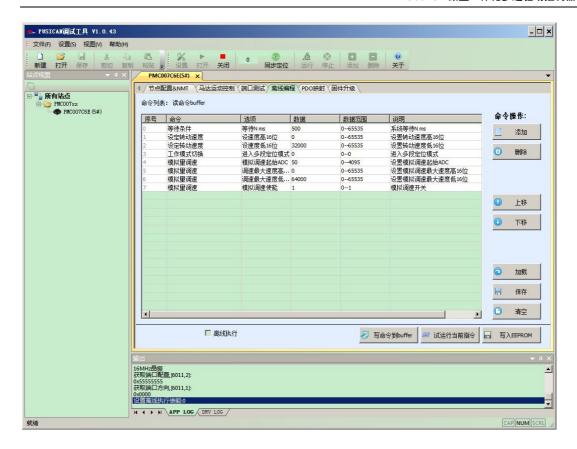


图 6-4

用户可根据实际需求通过右侧的"添加"、"删除"、"上移"、"下移"按钮操作完成对离线指令的编辑,可将指令保存为本地磁盘文件,也可将本地磁盘的离线指令文件加载到界面显示。

指令编辑完成后,需要进行在线调试时,首先按"写命令到 buffer"按钮,将程序下载到 PMC007C2 控制器的片上 Memory 中,然后可以按"运行当前命令"按钮,设备将运行当前选择的指令。确认无误后,按"写命令到 Flash"按钮将所有程序烧写到非遗失性的 Flash存储器中。

点击选择"离线执行",控制器将自动运行离线指令,下次重新上电时控制器将从Flash读出离线指令并自动运行。

6.3.6 PDO 映射

在主界面点击 "PDO 映射"进入该界面,进入该界面后软件将自动从设备读取当前的映射对象并显示在界面上,如图 6-5 所示。

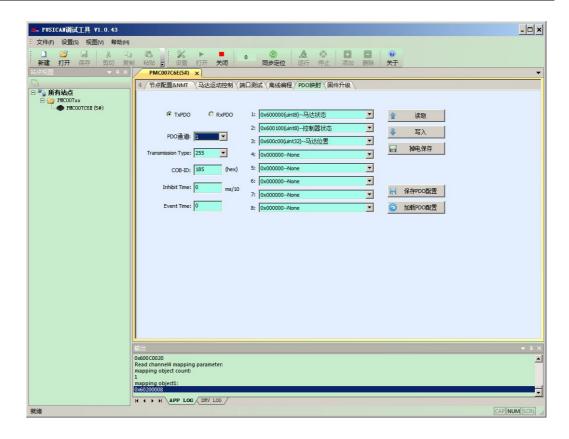


图 6-5

PMC007C2 支持 4 个通道的发送 PDO 和 4 个通道的接收 PDO,每个通道最多可映射 8 个对象。相关参数配置细节请参考附录二的 2.1 章节。

6.3.7 固件升级

PMC007C2 可通过 CAN 总线进行固件升级,固件升级在 boot loader 模式进行。在"固件升级" 界面点击一次"进入 boot loader/应用",PMC007C2 将进入 boot loader 模式,节点 ID 和波特率为应用模式下设置的节点 ID 和波特率。

进入 boot loader 模式后 LED 灯将双闪,在"应用路径"栏选择升级文件,点击"升级"按钮开始进行升级,如图 6-7 所示。升级完成后工具将弹出提示对话框,此时可以再点击一次"进入 boot loader/应用"(或者对控制器重新上电),控制器将切换到正常应用模式。

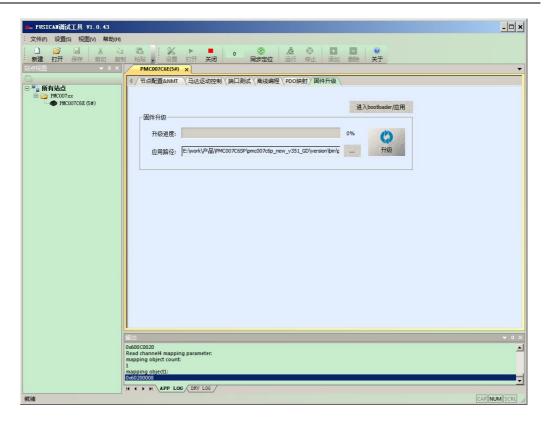


图 6-7

6.3.8 图形编程支持

PUSICAN 调试工具软件支持图形编程,通过界面添加流程项,设置相关运动参数即可完成简单的运动。

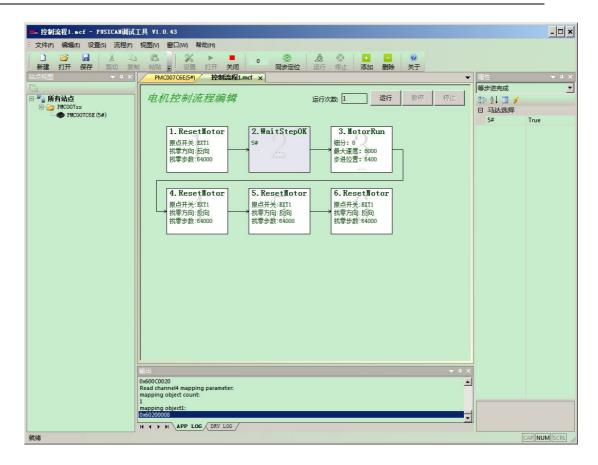
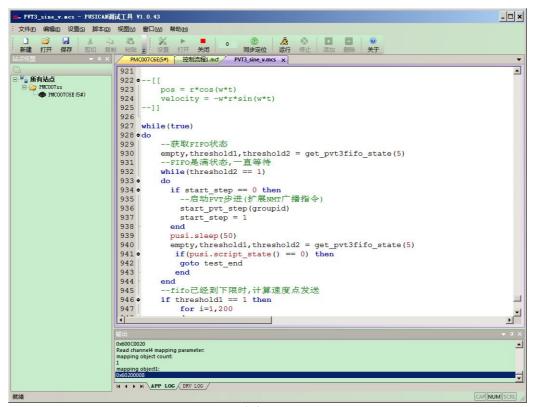


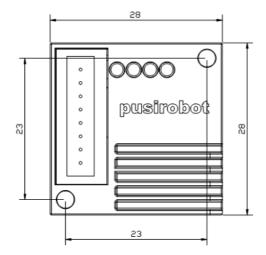
图 6-8

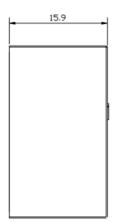
6.3.9 脚本语言支持

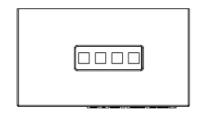
PUS I CAN 调试工具软件支持 LUA 脚本语言,并已经内置 CANOPEN SDO 操作函数,用户可以直接在脚本程序中调用。可以通过点击左上方的"新建"、"打开"图标来创建或打开一个脚本文件,一旦脚本程序被编写完成,就可以通过右上方的"运行"、"停止"图标来控制程序执行。如下图 6-9。

LUA 脚本语言的语法与 C 语言类似,在没有特别 UI 界面要求的应用场景中,用户可以借助 LUA 脚本强大的功能轻松完成复杂的控制循环任务,而无需在上位机中开发 CANOPEN 主控程序。




图 6-9


7 电气特性


参数	条件	最小值	典型值	最大值	单位
输入电压	常温 25℃	9	24	28	٧
操作温度	12V 输入电压	-20		55	°C
10 接口最大电流	灌电流/拉电流	0	10	20	mA
每相输出电流	常温 25℃	0. 2	1. 3	2	Α
10 接口低电平	12V 电源电压	-0.5		1.0	٧
10 接口高电平	12V 电源电压	3. 0		5. 5	٧

8 安装尺寸图

附录一 PMC007C2 对象字典表 9

	Sub			Туре			
Index	index	Object	Name	数据类	Attr.	PDO	存储
索引	子索引	对象类型	名称	型型	属性	映射	类型
1000h		VAR	Device type	UINT32	RO	NO	ROM
1001h		VAR	Error registor	UINT8	RO	Optional	RAM
1002h		VAR	manufacturer status	UINT32	RO	Optional	RAM
			register				
1003h		ARRAY	pre-defined error field				RAM
	0h		number of errors	UINT8		NO	
	1h-7h		standard error field			Optional	
1005h		VAR	COB-ID SYNC	UINT32	RW	NO	ROM
1006h		VAR	communication cycle	UINT32	RW	NO	ROM
			period				
1007h		VAR	synchronous window	UINT32	RW	Optional	ROM
			length				
1008h		VAR	manufacturer device	Visible	const	NO	ROM
			name	String			
1009h		VAR	manufacturer hardware	Visible	const	NO	ROM
			version	String			
100ah		VAR	manufacturer software	Visible	const	NO	ROM
			version	String			
1014h		VAR	COB-ID Emergency	UINT32	RO	NO	ROM
			message				
1015h		VAR	Inhibit Time EMCY	UINT16	RW	NO	ROM
1016h		ARRAY	Consumer Heartbeat				ROM
			Time				
	0h		number entries	UINT8	RO	NO	
	1h-3h		Consumer Heartbeat	UINT32	RW	NO	
			Time				
1017h		VAR	Producer Heartbeat	UINT16	RW	NO	ROM
			Time				
1018h		RECORD	Identity Object				ROM
	0h		number of entries	UINT8	RO	NO	
	1h		Vendor ID	UINT32	RO	NO	
	2h		Product code	UINT32	RO	NO	
	3h		Revision number	UINT32	RO	NO	
	4h		Serial number	UINT32	RO	NO	
1200h		RECORD	Server SDO parameter				ROM
	0h		number of entries	UINT8	RO	NO	
	1h		COB-ID	UINT32	RO	NO	
			Client->Server (rx)				

	2h		COB-ID Server ->	UINT32	RO	NO	
			Client (tx)				
	3h	-	Node-ID of the SDO	UINT32	RW	NO	
			client				
1280h		RECORD	Client SDO parameter				RAM
	0h	-	number of entries	UINT8	RO	NO	
	1h	-	COB-ID	UINT32	RW	NO	
			Client->Server (tx)				
	2h	•	COB-ID Server ->	UINT32	RW	NO	
			Client (rx)				
	3h	•	Node-ID of the SDO	UINT32	RW	NO	
			server				
1400h		RECORD	receive PDO parameter				ROM
	0h		largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1401h		RECORD	receive PDO parameter				ROM
	0h		largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1402h		RECORD	receive PDO parameter				ROM
	0h		largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1403h		RECORD	receive PDO parameter				ROM
	0h		largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	

	4h		compatibility entry	UINT8	RW	NO	
	5h	1	event timer	UINT16	RW	NO	
1600h		RECORD	receive PDO mapping				ROM
	0h		number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			nth application object				
			to be mapped				
1601h		RECORD	receive PDO mapping				ROM
	0h		number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			nth application object				
			to be mapped				
1602h		RECORD	receive PDO mapping				ROM
	0h		number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			nth application object				
			to be mapped				
1603h		RECORD	receive PDO mapping				ROM
	0h		number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			nth application object				
			to be mapped				
1800h		RECORD	transmit PDO				ROM
			parameter				
	0h		largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1801h		RECORD	transmit PDO				ROM
			parameter				
	0h		largest sub-index	UINT8	RO	NO	
			supported				

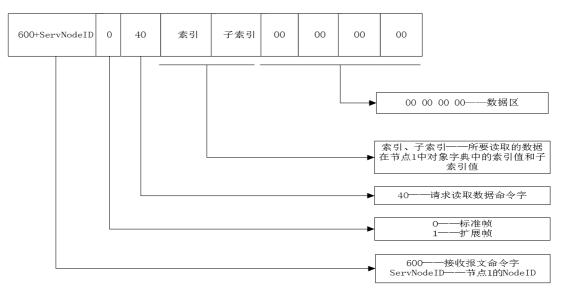
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h	1	transmission type	UINT8	RW	NO	
	3h	1	inhibit time	UINT16	RW	NO	
	4h	-	reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1802h		RECORD	transmit PDO				ROM
100211		RECORD	parameter				KOW
	0h		largest sub-index	UINT8	RO	NO	
	On		supported	CITYTO	RO		
	1h	-	COB-ID used by PDO	UINT32	RW	NO	
	2h	-	transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1803h		RECORD	transmit PDO				ROM
100311		KECOKD	parameter				KOW
	0h	-	largest sub-index	UINT8	RO	NO	
	OII		supported	UINTO	KO	NO	
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h	-	reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1a00h		RECORD					ROM
140011	0h	RECORD	transmit PDO mapping number of mapped	UINT8	RO	NO	KOW
	OII		application objects in	UINTO	KO	NO	
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
	111-011		n-th	0111132	1000	110	
			application object to be				
			mapped				
1a01h		RECORD	transmit PDO mapping				ROM
	0h		number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
			mapped				
1a02h		RECORD	transmit PDO mapping				ROM
	0h]	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				

	1h-8h		PDO mapping for the	UINT32	RW	NO	
	TH OH		n-th	011132	TCVV	110	
			application object to be				
			mapped				
1a03h		RECORD	transmit PDO mapping				ROM
140511	0h	120012	number of mapped	UINT8	RO	NO	110111
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
			mapped				
2002h		VAR	节点 ID	UINT8	RW	NO	ROM
2003h		VAR	波特率	UINT8	RW	NO	ROM
2006h		VAR	组 ID	UINT8	RW	NO	ROM
6000h		VAR	错误状态	UINT8	RW	Optional	RAM
6001h		VAR	控制器状态	UINT8	RW	Optional	RAM
6002h		VAR	转动方向	UINT8	RW	NO	RAM
6003h		VAR	最大速度	INT32	RW	NO	RAM
6004h		VAR	步进指令	INT32	RW	NO	RAM
6005h		VAR	工作模式	UINT8	RW	NO	RAM
6006h		VAR	启动速度	UINT16	RW	NO	ROM
6007h		VAR	停止速度	UINT16	RW	NO	ROM
6008h		VAR	加速度系数	UINT8	RW	Optional	ROM
6009h		VAR	减速度系数	UINT8	RW	Optional	ROM
600ah		VAR	细分数	UINT16	RW	Optional	ROM
600bh		VAR	最大相电流	UINT16	RW	Optional	ROM
600ch		VAR	电机位置	INT32	RW	Optional	RAM
600dh		VAR	电流衰减	UINT8	RW	NO	ROM
600eh		VAR	电机使能	UINT8	RW	NO	RAM
600fh		RECORD	外部紧急停止	UINT8	RW	NO	ROM
	0h		参数个数	UINT8	RO	NO	ROM
	1h		外部紧急停止使能	UINT8	RW	NO	RAM
	2h		外部紧急停止触发模	UINT8	RW	NO	RAM
			式				
	3h		传感器类型	UINT8	RW	NO	ROM
6010h		RECORD	PVT 步进	UINT8	RW	NO	ROM
	0h		参数个数	UINT8	RO	NO	ROM
	1h		PVT 操作控制	UINT8	RW	NO	RAM
	2h		PVT 模式控制	UINT8	RW	NO	RAM
	3h		最大 PVT 点数	UINT16	RW	NO	RAM
	4h		PVT 指针	UINT16	RO	NO	ROM

	5h		PVT 模式 1 起始索引	UINT16	RW	NO	RAM
	6h		PVT模式1结束索引	UINT16	RW	NO	RAM
	7h		PVT 模式 2 加速阶段	UINT16	RW	NO	RAM
	01		起始索引	I ID IT I	DIII	NO	DAM
	8h		PVT 模式 2 加速阶段	UINT16	RW	NO	RAM
	01		结束索引	LIDIT16	DW	NO	DAM
	9h		PVT 模式 2 循环阶段	UINT16	RW	NO	RAM
	A 1		起始索引	LIDIT16	DW	NO	DAM
	Ah		PVT 模式 2 循环阶段	UINT16	RW	NO	RAM
	DI		结束索引	LIDIT16	DW	NO	DAM
	Bh		PVT 模式 2 循环阶段	UINT16	RW	NO	RAM
	CI		次数	LID ITTL	DIII	NO	D 4 3 4
	Ch		PVT 模式 2 减速阶段	UINT16	RW	NO	RAM
	DI		起始索引	LIDITI	DIII	NO	DAM
	Dh		PVT 模式 2 减速阶段	UINT16	RW	NO	RAM
	T1		结束索引	LIDIT16	DW	NO	DAM
	Eh		PVT 模式 3 FIFO 深度	UINT16	RW	NO	RAM
	Fh		PVT 模式 3 FIFO 下限	UINT16	RW	NO	RAM
	10h		PVT 模式 3 FIFO 上限	UINT16	RW	NO	RAM
	11h		PVT 位置	INT32	RW	NO	RAM
	12h		PVT 速度	INT32	RW	NO	RAM
	13h		PVT 时间	INT32	RW	NO	RAM
6011h		RECORD	GPIO 参数				ROM
	0h		GPIO 参数个数	UINT8	RO	NO	
	1h		GPIO方向	UINT16	RW	NO	
	2h		GPIO 配置	UINT32	RW	NO	
6012h		VAR	GPIO 值	UINT16	RW	Optional	RAM
6013h		RECORD	OCP 参数(ROM)				
	0h		OCP 参数个数	UINT8	RO	NO	
	1h		OCT1	UINT8	RW	NO	
	2h		OCD1	UINT8	RW	NO	
6016h		VAR	保留	UINT8	RW	NO	RAM
6018h		RECORD	离线编程参数1				ROM
	0h		离线编程参数1的参	UINT8	RO	NO	
			数个数				
	1h		离线编程指令总数	UINT8	RW	NO	
	2h		离线自动运行使能	UINT8	RW	NO	
6019h		RECORD	离线参数 2				RAM
	0h		离线编程参数2参数	UINT8	RO	NO	
			个数				
	1h		离线参数指针	UINT8	RW	NO	
L	2h		离线指令	UINT32	RW	NO	

	3h		离线指令保存	UINT8	RW	NO	
	4h		运行当前指令	UINT8	RW	NO	
601ah		VAR	外部紧急停止去抖延	UINT16	RW	NO	ROM
			时				
601bh		VAR	堵转配置	UINT8	RW	NO	ROM
601ch		VAR	绝对位置步进	INT32	RW	NO	RAM
601dh		RECORD	同步定位参数				RAM
	0h		参数个数	UINT8	RO	NO	
	1h		同步定位速度	INT32	RW	NO	
	2h		同步定位位置	INT32	RW	NO	
601fh		VAR	幻彩灯颜色	UINT32	RW	NO	RAM
6020h		VAR	终止步进	UINT8	RW	NO	RAM
6021h		VAR	编码器 CPR	UINT16	RW	NO	ROM
6022h		VAR	位置掉电保存值	INT32	RO	NO	ROM
6023h		VAR	闭环参数 KP	UINT8	RW	NO	ROM
6024h		VAR	闭环参数 KI	UINT8	RW	NO	ROM
6025h		VAR	闭环参数 KD	UINT8	RW	NO	ROM
6026h		VAR	闭环前置滤波参数	INT8	RW	NO	ROM
6027h		VAR	闭环后置滤波参数	INT16	RW	NO	ROM
6028h		VAR	闭环堵转长度	INT16	RW	NO	ROM
6029h		VAR	闭环力矩环使能	UINT8	RW	NO	ROM
602Ah		VAR	掉电自动保存使能	UINT8	RW	NO	ROM
602Bh		VAR	模拟量输入	UINT16	RW	Optional	RAM
602Ch		RECORD	步进通知				RAM
	0h		步进通知参数个数	UINT8	RO	NO	
	1h		步进通知状态	UINT8	RW	Optional	
	2h		步进通知位置1	INT32	RW	Optional	
	3h		步进通知位置 2	INT32	RW	Optional	
602Dh		RECORD	PP/PV 模式参数 1				ROM
	0h		参数个数	UINT8	RO	NO	
	1h		加速度	UINT32	RW	Optional	
	2h		减速度	UINT32	RW	Optional	
	3h		启动速度	UINT32	RW	Optional	
	4h		停止速度	UINT32	RW	Optional	
602Eh		RECORD	PP/PV 模式参数 2				RAM
	0h		参数个数	UINT8	RO	NO	
	1h		控制字	UINT16	RW	Optional	
	2h		状态字	UINT16	RW	Optional	
	3h		运行速度	INT32	RW	Optional	
	4h		目标位置	INT32	RW	Optional	
602Fh		RECORD	模拟量定位参数				ROM
	0h		参数个数	UINT8	RO	NO	

	1h		模拟量定位使能	UINT8	RW	Optional	
	2h		模拟量起始 AD 码	UINT16	RW	Optional	
	3h		模拟量调节间隔时间	UINT16	RW	Optional	
	4h		模拟量触发值	UINT16	RW	Optional	
	5h		模拟量最小位置	INT32	RW	Optional	
	6h		模拟量最大位置	INT32	RW	Optional	
6030h		VAR	实时速度	INT32	RW	Optional	RAM


10 附录二 CANOPEN 通讯示例

10.1 SDO 读写示例

10.1.1 SDO 读取

10.1.1.1 数据帧格式

主站发送:

从站响应:

数据长度为 1 个字节时										
580+ServNodeID	0	4F	索引	子索引	d0	0	0	0		
数据长度为 2 个字节时										
580+ServNodeID	0	4B	索引	子索引	d0	d1	0	0		
	数据长度为 3 个字节时									
580+ServNodeID	0	47	索引	子索引	d0	d1	d2	0		

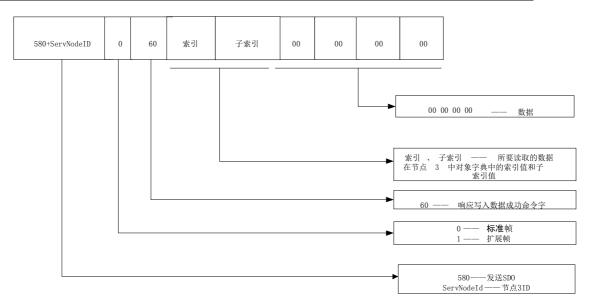
数据长度为 4 个字节时								
580+ServNodeID	0	43	索引	子索引	d0	d1	d2	d3

10.1.1.2 SDO 读取示例

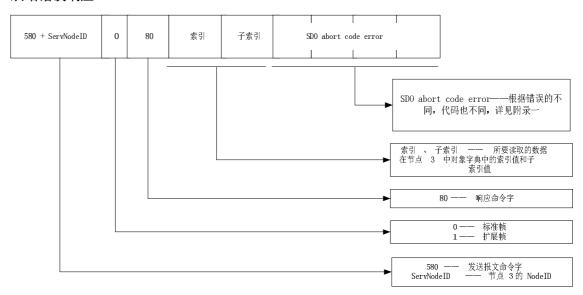
主站发送: 605 40 01 60 00 00 00 00 00 从站响应: 585 4F 01 60 00 08 00 00 00

主站向节点 ID 为 5 的设备发起读请求,请求的索引地址为 0x6001, 子地址为 0x00, 对应 PMC007 对象字典中的控制器状态参数。从站响应 4F 表示该参数长度为一个字节,数据 为 0x08, 表示设备出于 busy 状态。

10.1.2 SDO 写入


10.1.2.1 数据帧格式

主站发送:


数据长为 1 个字节时								
600+ServNodeID	0	2F	索引	子索引	d0	0	0	0
数据长度为 2 个字节时								
600+ServNodeID	0	2B	索引	子索引	d0	d1	0	0
数据长度为 3 个字节时								
600+ServNodeID	0	27	索引	子索引	d0	d1	d2	0
数据长度为 4 个字节时								
600+ServNodeID	0	23	索引	子索引	d0	d1	d2	d3

从站正确响应:

从站错误响应:

注: 其中 SDO abort code error 根据具体错误返回相应的参数, 其具体参数详见附录二。

10.1.2.2 SDO 写入示例

主站发送: 605 2F 03 20 00 07 00 00 00 从站响应: 585 60 03 20 00 00 00 00 00

主站向节点 ID 为 5 的设备发起写请求,请求的索引地址为 0x2003,子地址为 0x00,写入的数据为 7,对应 PMC007 对象字典中的波特率设置参数,写入数据 7 表示设置波特率为 800Kbit/s。从站响应 60 表示写入成功。

主站发送: 605 23 04 60 00 80 0C 00 00 从站响应: 585 80 04 60 00 22 00 00 08

主站向节点 ID 为 5 的设备发起写请求,请求的索引地址为 0x6004,子地址为 0x00,写入的数据为 0xC80 (3200),对应 PMC007 对象字典中的步进命令,写入数据 3200 表示让电机执行 3200 步步进。从站响应 80 表示写入失败,错误码为 0x08000022,查看附录三可知

该错误码表示由于当前设备状态导致数据不能传送或保存到应用。查看控制器的状态参数是 否外部停止有效和错误状态是否有错误。

11 附录三 PDO 配置示例

11.1 PDO 概述

PDO 通信是基于生产者/消费者(Producer/Consumer)模型,主要用于传输实时数据。 产生数据的节点将带有自己节点号的数据放到总线上,需要该数据的节点可以配置为接收该 节点发送的数据。PDO 的传输是由事件触发的, 这样的事件可以是代表一个 PDO 变量的变化; 可以是时间的过期或者是接收到一个特定的消息。过程数据直接在一个 CAN 消息中传输而不 需要协议头文件。一个 PDO 的长度是在 0 到 8 个字节之间。

PDOs 包含在其映射参数和通信参数中, PMC007C2 支持 4 个 PDOs。

11.1.1 PDO 的结构—映射参数

在对象词典中一个 PDO 由临近的条目构成。所谓的映射参数定义了这些条目的连接。一 个映射参数通过索引、分索引和位数定义数据源。

例如:

Index	Sub-index	Object Data	Description
0x1A00	0	4	Number of mapped entries
	1	0x20000310	The entry at index 0x2000, sub-index 3, with a length of 16 bit, is mapped to bytes 0 and 1 within the CAN message.
	2	0x20000108	The entry at index 0x2000, sub-index 1, with a length of 8 bit, is mapped to byte 2 within the CAN message.

Table 1: Example for mapping parameters for the first TPDO

一个 CAN 消息最多有 8 个字节。这意味着当使用一个 PDO 时,在一个 PDO 中最多发送 8 个字典的对象条目。

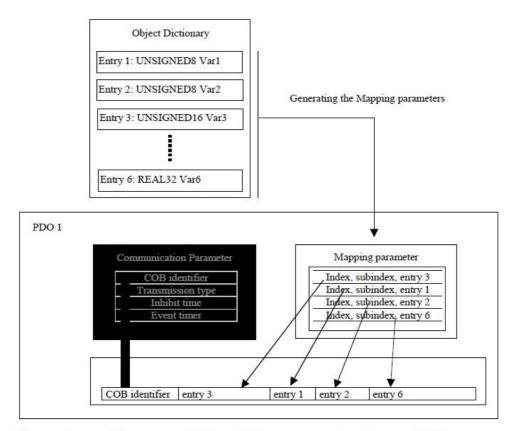


Figure 3: Mapping of Object Dictionary entries into a PDO

11.1.2 PDO 的结构—通信参数

为了传输一个 PDO, 通信参数定义了传输的性质和 CAN 标识符(CAN identifier)。

Index	Sub-index	Object Data	Description		
1800h	0	Number on entries			
	1	COB-ID	CAN identifier for the PDO		
	2	Transmission Type	transmission type of the PDO		
	3	Inhibit Time minimum inhibit time for a TPD0			
	4	reserved	reserved		
	5	Event Time	maximum time between two TPDOs		

Table 4: Communication parameter for the first TPDO

PDO 通信参数是在对象词典的条目

(RPDOs: index 0x1400-0x15FF, TPDOs: 0x1800-0x19FF)

如果允许,映射参数在数据服务对象帮助下可以通过 CAN 修改。

11.1.2.1 COB-ID(CAN 标识符, 分索引 1)

COB-ID 作为身份证明, PDO 的优先权在总线入口(access)之前。对于每一个 CAN 消息来说只允许有一个发送者(生产者)。然而,对这个已存在的消息来说其允许多个接收者(消费者)。

Bit	31	30	29	28 – 11	10 - 0
11-bit-ID	0/1	0/1	0	0000000000000000000	11-bit identifier
29-bit-ID	0/1	0/1	1	29-bit identifier	•

Table 5: Structure of a COB-ID for PDOs

第 30 位为 0, 表示对这个 PDO 来说一个远程发送请求(RTR)是被允许。

PDO COB-ID 分配:

PDO1(发送)	181H-1FFH
PDO1(接收)	201H-27FH
PDO2(发送)	281H-2FFH
PDO2(接收)	301H-37FH
PDO3(发送)	381H-3FFH
PDO3(接收)	401H-47FH
PDO4(发送)	481H-4FFH
PDO4(接收)	501H-57FH

11.1.3 PDO 触发方式

PDO 的发送可通过以下方式触发:

- 1)事件触发;
- 2) 时间性触发:
- 3)单个查询;
- 4) 同步;

当单独使用事件触发 PDO 发送时,一旦过程发生改变则发送 PDO。这可能带来非常严重的后果,那就是当某个过程数据变化的频率非常高时,这个 PDO 不停地发送,导致其它节点的报文发送不出去,严重影响总线的效率。

CANopen 采用 "Inhibit time" 机制来解决这个问题。Inhibit time 是一个可以配置的以 100us 为单位的时间段。相同 PDO 发送至少间隔这个时间段,这样就可以确定某个事件触发的 PDO 的最大发送频率。

一般来说,PDO 发送可以由任何触发方式的组合来触发。但最常用的是将事件触发和时间触发结合起来使用。单独事件触发,过程数据长时间没有变化(比如温度变量等),该PDO 长时间没被触发,这样会影响刚加入网络中的节点,这时如果再加上时间触发的方式,就可以强制 PDO 在规定的时间内再发送一次。例如某个 PDO 配置 Inhibit time 为 50, Event timer 为 250, 这样该 PDO 可以在过程数据变化时发送,发送的最小间隔是 5ms, 另一方面不管数据有没有发生变化,每隔 250ms PDO 都会发送一次。

PDO 触发方式通过配置 PDO 通信参数对象字典的子索引 2 配置实现。该索引的取值范围为 0-255。下面列出了不同的值对就不同的触发方式。

0: PDO 在收到 SYNC 后发送, 但不是周期的;

1-240: PDO 在收到 SYNC 后发送,周期发送,该值为两次发送 PDO 之间的间隔的 SYNC 个数;

255:事件触发;

11.2 PDO 配置示例

PMC007C2 支持通过 SD0 配置 PD0 映射, 以配置 GP10 值为 TPD01 为示例, 发送的 SD0 为:

设置通信的 COB-ID 为 187, 即节点 ID 为 7 的设备接收该 PDO

主站发送: 605 23 00 18 01 87 01 00 00

设置为事件触发

主站发送: 605 2F 00 18 02 FF 00 00 00

设置 Inhibit time 为 5ms

主站发送: 605 2B 00 18 03 32 00 00 00

设置 Event time 为 1000ms

主站发送: 605 2B 00 18 05 E8 03 00 00

设置映射条目数 1

主站发送: 605 2F 00 1A 00 01 00 00 00 设置映射参数,将 0x6012 映射到 TPD01 主站发送: 605 23 00 1A 01 10 00 12 60

配置完成后 PMC007 会每隔 1s 发出 PD0 报文, 当 GP10 端口有变化时也会发出该报文 187 03 00

该报文表示 GPI01 和 GPI02 为高电平。

12 附录四 SDO abort code error

中止代码	代码功能描述
05030000	触发位没有交替改变
05040000	SDO 协议超时
05040000	非法或未知的Client/Server 命令字
05040001	无效的块大小(仅 Block Transfer 模式)
05040003	无效的序号(仅 Block Transfer 模式)
05030004	CRC 错误(仅 Block Transfer 模式)
05030005	内存溢出
06010000	对象不支持访问
06010001	试图读只写对象
06010002	试图写只读对象
06020000	对象字典中对象不存在
06040041	对象不能够映射到 PDO
06040042	映射的对象的数目和长度超出 PDO 长度
06040043	一般性参数不兼容
06040047	一般性设备内部不兼容
06060000	硬件错误导致对象访问失败
06060010	数据类型不匹配,服务参数长度不匹配
06060012	数据类型不匹配,服务参数长度太大
06060013	数据类型不匹配,服务参数长度太短
06090011	子索引不存在
06090030	超出参数的值范围(写访问时)
06090031	写入参数数值太大
06090032	写入参数值太小
06090036	最大值小于最小值
08000000	一般性错误
08000020	数据不能传送或保存到应用
08000021	由于本地控制导致数据不能传送或保存到应用
08000022	由于当前设备状态导致数据不能传送或保存到应用
08000023	对象字典动态产生错误或对象字典不存在